Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum
نویسندگان
چکیده
BACKGROUND The soil bacterium Corynebacterium glutamicum, best known for its glutamate producing ability, is suitable as a producer of a variety of bioproducts. Glutamate is the precursor of the amino acid proline. Proline biosynthesis typically involves three enzymes and a spontaneous cyclisation reaction. Alternatively, proline can be synthesised from ornithine, an intermediate of arginine biosynthesis. The direct conversion of ornithine to proline is catalysed by ornithine cyclodeaminase. An ornithine overproducing platform strain with deletions of argR and argF (ORN1) has been employed for production of derived compounds such as putrescine. By heterologous expression of ocd this platform strain can be engineered further for proline production. RESULTS Plasmid-based expression of ocd encoding the putative ornithine cyclodeaminase of C. glutamicum did not result in detectable proline accumulation in the culture medium. However, plasmid-based expression of ocd from Pseudomonas putida resulted in proline production with yields up to 0.31 ± 0.01 g proline/g glucose. Overexpression of the gene encoding a feedback-alleviated N-acetylglutamate kinase further increased proline production to 0.36 ± 0.01 g/g. In addition, feedback-alleviation of N-acetylglutamate kinase entailed growth-coupled production of proline and reduced the accumulation of by-products in the culture medium. CONCLUSIONS The product spectrum of the platform strain C. glutamicum ORN1 was expanded to include the amino acid L-proline. Upon further development of the ornithine overproducing platform strain, industrial production of amino acids of the glutamate family and derived bioproducts such as diamines might become within reach.
منابع مشابه
Systematic pathway engineering of Corynebacterium glutamicum S9114 for l-ornithine production
BACKGROUND L-Ornithine is a non-protein amino acid with extensive applications in medicine and the food industry. Currently, L-ornithine production is based on microbial fermentation, and few microbes are used for producing L-ornithine owing to unsatisfactory production titer. RESULTS In this study, Corynebacterium glutamicum S9114, a high glutamate-producing strain, was developed for L-ornit...
متن کاملMetabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine
BACKGROUND L-ornithine is effective in the treatment of liver diseases and helps strengthen the heart. The commercial applications mean that efficient biotechnological production of L-ornithine has become increasingly necessary. Adaptive evolution strategies have been proven a feasible and efficient technique to achieve improved cellular properties without requiring metabolic or regulatory deta...
متن کاملMethanococcus jannaschii generates L-proline by cyclization of L-ornithine.
Cell extracts of Methanococcus jannaschii have been shown to readily convert L-ornithine to L-proline. This cyclization reaction proceeds with the loss of only the C-2 nitrogen, as has been documented for ornithine cyclodeaminase (EC 4.3.1.12). Since no gene homologous to that coding for ornithine cyclodeaminase is present in the genome of M. jannaschii, these results indicate that proline bios...
متن کاملTranscriptomic Changes in Response to Putrescine Production in Metabolically Engineered Corynebacterium glutamicum
Putrescine is widely used in industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Although engineered Corynebacterium glutamicum has been successfully used to produce high levels of putrescine, the overall cellular physiological and metabolic changes caused by overproduction of putrescine remains unclear. To reveal the transcriptional changes that occur in resp...
متن کاملBiosynthesis of trans-4-hydroxyproline by recombinant strains of Corynebacterium glutamicum and Escherichia coli
BACKGROUND Trans-4-hydroxy-L-proline (trans-Hyp), one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. Although there are some natural biosynthetic pathways of trans-Hyp existing in microorganisms, the yield is still too low to be scaled up for industrial applications. Until now the production of trans-Hyp is mainly from the acid ...
متن کامل